
Mapping short-wave albedo of agricultural surfaces using

airborne PolDER data

F. Jacoba,b,*, A. Oliosoa, M. Weissa, F. Bareta, O. Hautecoeurc

aINRA Climat-Sol-Environnement, Avignon, France
bHydrology and Remote Sensing Laboratory, USDA Agricultural Research Service, Beltsville, MD, USA

cCESBio CNES/CNRS/UPS, Toulouse, France

Received 5 February 2001; received in revised form 7 May 2001; accepted 2 June 2001

Abstract

This study focuses on albedo mapping over agricultural surfaces using multidirectional and multispectral remote sensing data. These data

were acquired using the airborne PolDER sensor during the Remote Sensing Data Assimilation (ReSeDA) experiment. The data set allowed

to perform a validation over the growth cycles of several crops. Problems induced by mixed pixels were reduced since the ground spatial

resolution was 20 m. First, linear kernel-driven bidirectional reflectance distribution function (BRDF) models were used to retrieve the BRDF

and then to compute the hemispherical reflectance in the PolDER channels. We tested the four most classical models: Li-Ross, MRPV,

Roujean, and Walthall. They presented similar interpolation performances, whereas the quality of the hemispherical reflectance estimates was

also driven by the extrapolation performances. Second, the albedo was computed as a linear combination of the waveband hemispherical

reflectances. We used several sets of coefficients proposed in the literature for different sensors. The validation of the albedo maps against

field measurements showed that it was possible to achieve a relative accuracy about 9% when using an appropriate coefficient set. D 2002

Elsevier Science Inc. All rights reserved.
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1. Introduction

Surface albedo is defined as the fraction of incident

solar energy (diffuse and direct components) reflected both

in all directions above the surface and over the whole

solar spectrum (Pinty & Verstraete, 1992). Its knowledge

is of prime interest for weather forecast and climate

modeling (Dickinson, 1992), as well as for surface flux

estimation (Kustas et al., 1994; Olioso, Chauki, Courault,

& Wigneron, 1999). The required accuracy varies from an

application to another. Sellers (1993) cited an absolute

accuracy about ± 2%. Visible–near infrared (NIR) remote

sensing is an interesting tool for monitoring albedo since it

can frequently provide maps at local and regional scales.

However, remotely sensed data sample the bidirectional

reflectance in a limited number of viewing directions and

over a limited number of wavebands. Therefore, the

albedo estimation from such data requires first, to char-

acterize the whole angular distribution of the bidirectional

reflectance from the sensor directional sampling (Walthall,

Roujean, & Morisette, 2000); and second, to perform a

spectral extrapolation from observations in few wave-

bands, so-called the narrowband to broadband conversion

(Song & Gao, 1999).

The retrieval of the whole BRDF (bidirectional reflect-

ance distribution function) from the angular sampling pro-

vided by a multidirectional data set can be performed by the

inversion of either a radiative transfer model or a kernel-

driven BRDF model. The inversion of a radiative transfer

model is time consuming since it requires tedious numerical

procedures. It is also mathematically complex because of

problems such as the choice of initial guess of the parameters

to be deduced, the choice of the merit function, the local

minima, or the variable ambiguities (Pragnère et al., 1999).

On the other hand, kernel-driven models are not costly to

compute since only few parameters have to be tuned (Lucht

& Roujean, 2000). Besides, the use of linear kernel-driven
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models both eases the procedure of inversion that becomes

analytical and provides estimates independent of the spatial

resolution (Brown De Colstoun et al., 1996). Of course,

nonlinear models that can be linearized have almost the same

interesting properties. In this context, several studies sug-

gested the operational implementation of linear kernel-

driven BRDF models for albedo mapping at the global scale

(Baret et al., 1997; Lucht, Schaaf, & Strahler, 2000; Roujean,

Leroy, & Deschamps, 1992; Wanner et al., 1997).

The narrowband to broadband conversion can be per-

formed by expressing the albedo as a linear combination of

bidirectional or hemispherical reflectances in a selection of

wavebands. Such a linear method presents also the interest

not to depend on the spatial scale. The determination of the

coefficients has been investigated by several authors, mainly

using the red and NIR channels of the NOAA/AVHRR

sensors. Several empirical sets of coefficients were pro-

posed, and Song and Gao (1999) suggested expressing them

as empirical functions of the NDVI. Other recent works

were devoted to new sensors, considering either bidirec-

tional reflectance (Liang, Strahler, & Walthall, 1999) or

hemispherical reflectance (Weiss et al., 2000).

The objective of this study was to map instantaneous

surface albedo using multidirectional and multispectral

remote sensing data. It was based on the ReSeDA (Remote

Sensing Data Assimilation) experiment (Olioso et al.,

2000; Prévot et al., 1998) that provided an interesting

framework for assessing the methods discussed above.

During this experiment, visible–NIR remote sensing data

were acquired over agricultural surfaces using the airborne

PolDER imaging radiometer (Leroy, Hautecoeur, Berthelot,

& Gu, 2000). These high spatial resolution data were

multitemporal, allowing to perform a validation over the

growth cycles of several crops while problems due to

mixed pixels were reduced. Several linear kernel-driven

BRDF models and several sets of coefficients for the

narrowband to broadband conversion were evaluated to

compute maps of albedo. Finally, these maps were vali-

dated against field measurements.

2. Data acquisition and preprocessing

The ReSeDA site was located close to Avignon (France),

north of the Alpilles small mountain chain (latitude

43�470N, longitude 4�450E). It was an approximately

5� 5 km2 size agricultural region, with sunflower, wheat,

corn, grassland, and alfalfa fields about 200� 200 m2 size

(Fig. 1). During the experiment that lasted from December

1996 up to December 1997, PolDER data were collected

approximately every 3 weeks, and field measurements of

albedo were performed daily. We propose here an overview

of the data acquisition and preprocessing. More detailed

descriptions are given by Leroy et al. (2000), François,

Ottlé, and Olioso (2000), and Olioso et al. (2000).

2.1. Remote sensing data

The PolDER sensor (Deschamps et al., 1994) flew during

16 clear sky days from January, 30th to September, 18th.

Nominal flight altitude was about 3000 m, which yielded a

20-m nadir spatial resolution. Four flight lineswere parallel to

the principal plane and one was perpendicular. The five lines

were completed within 45 min centered on the solar. PolDER

measurements were performed in four 40-nm width wave-

bands centered at 443, 550, 670, and 865 nm. They corre-

sponded to zenith view angles ranging from 0� to 50�. The
instrument was calibrated by the Laboratoire d’Optique

Atmosphérique (Lille, France) approximately every 3 weeks

during the experiment. The calibration had a 5% accuracy,

and showed a temporal drift of the sensor response over the

12 months of the experiment. Atmospheric effects were

corrected using the SMAC code (Rahman & Dedieu,

1994). The input variables were field measurements or

climatological data of integrated atmospheric water vapor

content, aerosol optical thickness at 550 nm, and ozone

concentration. No accuracy was proposed for these atmo-

spheric corrections. Image registration was performed thanks

to the data provided by an electronic subsystem aboard the

plane including a Global Positioning System and a gyro-

scopic central unit. The images were geometrically matched

according to a Lambert II projection that provided a 20-m

spatial sampling of the experimental site.

2.2. Field data

In situ albedo was estimated as ratio of reflected to

incident solar radiation measurements. Reflected radiation

was measured with Kipp pyranometers or Skye silicon

sensors located on seven fields that corresponded to alfalfa,

sunflower, and wheat crops. The footprints ranged from 1000

to 3000 m2. Incident radiation was measured on the meteoro-

logical station located on the center of the experimental site,

Fig. 1. Land-use map of the ReSeDA experimental site.
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using a Kipp pyranometer. The Kipp sensors were calibrated

to provide estimates of incoming radiation over the whole

solar spectrum from measurements over the 400–3000-nm

spectral band. The Skye sensorsmeasured incoming radiation

between 400 and 1100 nm. It was necessary to consider the

spectral behavior of the observed surfaces to extrapolate the

SKYE measurements over the whole solar spectrum. A

correction procedure has been developed by Franc̨ois et al.

(2000). The SAIL model (Verhoef, 1984) was supplied with

both spectra of incident solar radiation and in situ data

characterizing soil and vegetation to simulate Kipp and Skye

albedos. Incident solar radiation spectrum was computed

from simulations using the 6S atmospheric radiative transfer

code (Vermote, Tanré, Deuzé, & Morcrette, 1997). The

simulations accounted for numerous atmospheric situations.

The soil and vegetation characteristics were leaf and soil

reflectance spectra, and Leaf Area Index. Based on these

simulations done by Franc̨ois et al., we calibrated a linear

regression between actual (i.e., Kipp) and Skye albedos at

solar noon. The linear regression provided a residual error of

root mean square error (RMSE) = 0.003 (Eq. (1)):

Albedoactual ¼ 0:785� AlbedoSkye þ 0:02 ð1Þ

3. Retrieving albedo from multidirectional and

multispectral data

3.1. From measurements to variables of interest

From the definition given in the Introduction, surface

albedo a(qs,js) can be expressed as:

aðqs;jsÞ ¼
R 3000 nm

300 nm
rh;lðqs;jsÞRg;lðqs;jsÞdlR 3000 nm

300 nm
Rg;lðqs;jsÞdl

ð2Þ

where the hemispherical reflectance, rh,l(qs,js), represents

the fraction of incident solar radiation, Rg,l(qs,js), reflected

in the whole hemisphere for a given wavelength l and given

solar zenith and azimuth angles (qs,js). It can be formulated

through the bidirectional reflectance rl(qs,js,qv,jv):

rh;lðqs;jsÞ ¼
Z 2p

0

Z p=2

0

rlðqs;js; qv;jvÞ

cosqvsinqvdqvdjv ð3Þ

where qv and jv are, respectively, zenith and azimuth view

angles.

Eq. (3) shows that estimating the hemispherical reflect-

ance requires knowledge of the whole BRDF. Moreover,

Eq. (2) underlines the necessity to know the hemispherical

reflectance over the whole solar spectrum. On the other

hand, the PolDER sensor provided measurements of the

bidirectional reflectance rlj
(qs,js,qv,jv) for a selection of

viewing directions (qv,jv) and over the four wavebands j.

Therefore, from this directional and spectral sampling, we

first computed the waveband hemispherical reflectances

rh,lj
(qs,js) by inverting linear kernel-driven BRDF models,

and second the albedo as a linear combination of these

hemispherical reflectance estimates.

3.2. Hemispherical reflectance estimation using linear

kernel-driven BRDF models

A linear kernel-driven BRDF model expresses the bidi-

rectional reflectance as a superposition of several basic

BRDF shapes, i.e., a linear combination of n kernels

Ki(qs,js,qv,jv) that only depend on illuminating and viewing

conditions (Eq. (4)):

rlðqs;js; qv;jvÞ ¼
Xi¼n

i¼1

ai;lKiðqs;js; qv;jvÞ ð4Þ

where ai,l are the weighting coefficients that depend on

both the wavelength and the nature of the pixel, and

sometime on the sun position. The number of kernels and

their formulations differ from a model to another with

respect to the description of the radiative transfer for land

surfaces. They can be purely empirical (Walthall, Norman,

Welles, Campbell, & Blad, 1985) or semiempirical since

they derive from approximations of more detailed physical

models (Roujean et al., 1992). Then, a multidirectional

data set over a given waveband j allows to estimate rapidly

and unambiguously the coefficients ai,lj
by solving the

linear system [rlj
] = [K][alj

] thanks to a least square

procedure (matrix pseudo-inversion). Finally, the hemi-

spherical reflectance is computed from the integration of

the retrieved BRDF. This integration either analytically

leads to a linear combinations of the coefficients alj
or

requires a numerical procedure that can be performed over

a 24� 24 direction Gaussian quadrature (Weiss et al.,

1999). Among the several linear kernel-driven BRDF

models that were developed these two last decades, the

four most classical ones were chosen: Li-Ross (Wanner, Li,

& Strahler, 1995), MRPV (Engelsen, Pinty, Verstraete, &

Martonchik, 1996), Roujean (Roujean et al., 1992), and

Walthall (Walthall et al., 1985). We should notice that

these models have three kernels, hence three coefficients

ai,l. The main phenomenological differences between

them are: (1) the description or not of the hot spot effect

and (2) the reciprocal nature of the model (the viewing and

illuminating directions can be inverted) that allows the

description of the BRDF variation with respect to the sun

position and further the retrieval of the diurnal course of

albedo. Since the objective of this study was to map

instantaneous albedo, we could use either reciprocal

models or not.

Walthall is an empirical model that is not reciprocal and

does not account for the hot spot effect. An improved variant

that verifies the reciprocity principle was proposed by Nilson

and Kuusk (1989). However, Lucht (1998) showed that this

F. Jacob et al. / Remote Sensing of Environment 80 (2002) 36–4638



improved version provides the worst BRDF and hemispher-

ical reflectance retrievals as compared to other models. On

the other hand, the original version presents good perform-

ances for both BRDF viewing angle interpolation and extra-

polation (Baret et al., 1997), whereas it is one of the most

robust models for studies at global scale including numerous

land-use situations (Strahler et al., 1996). Therefore, we

chose the original version of Walthall. Li-Ross and Roujean

are semiempirical reciprocal models that do not account for

the hot spot effect. The three kernels are associated to

particular physical processes (Wanner et al., 1995). Among

the four versions proposed for the Li-Ross model to better

account for different surface properties (Wanner et al., 1995),

we chose the Li-Sparse/Ross-Thick variant. Indeed, this

version was proposed by Wanner et al. (1997) for both

plowed fields and vegetative surfaces, and was presented

by Lucht (1998) and Privette, Eck, and Deering (1997) as one

of the most accurate models. The Roujean model was tested

over several measured and simulated data sets, and was often

presented as a robust model with interesting performances

(Baret et al., 1997; Chopping, 2000; Privette et al., 1997;

Roujean et al., 1992; Roujean, Tanre, Bréon, &Deuzé, 1997).

MRPV is a semiempirical reciprocal model that accounts for

the hot spot effect. It describes the BRDF as the product of

three functions. We used the semilinearized version (Engel-

sen et al., 1996) that was validated over a range of land cover

situations (Baret et al., 1997; Lucht, 1998; Weiss et al., 1999)

and was presented as one of the best models for both

interpolation and extrapolation of the sampled BRDF (Priv-

ette et al., 1997; Weiss et al., 2000).

3.3. From wavebands hemispherical reflectances to albedo:

the narrowband to broadband conversion

To perform the narrowband to broadband conversion, we

used several sets of coefficients proposed by Liang et al.

(1999) and Weiss et al. (1999) for atmospherically corrected

data (see Table 1). They correspond to wavebands and

spectral filters somewhat different from PolDER bands.

Nevertheless, we chose them since there was no proposition

for PolDER.

The approach used is similar to that of Price (1990). The

hemispherical reflectance rh,ll
(qs,js) for any wavelength

ll2[300–3000] nm is approximated as a linear combination

of the estimated waveband hemispherical reflectances

rh,lj
(qs,js) in the p narrowbands of the considered sensor:

rh;ll
ðqs;jsÞ ¼

Xj¼p

j¼1

bll ;lj
rh;lj

ðqs;jsÞ ð5Þ

This means that these p estimates are assumed to contain the

spectral information over the whole solar spectrum. From

this assumption, it is thus possible to express the albedo as a

linear combination of the p hemispherical reflectance

estimates (Eq. (6)):

aðqs;jsÞ ¼
Xj¼p

j¼1

bljrh;lj
ðqs;jsÞ ð6Þ

The validity of the assumption of Eq. (5) has been verified by

Weiss et al. (1999) using a simulated database generated over

the [400–2500] nm spectral range from the discrete ordinate

Table 1

Sets of coefficients used to compute the albedo as a linear combination of waveband hemispherical reflectances

Blue Green Red NIR Offset

Considered

wavelengths (nm)

445 560 665 855

Set No. 1 – – 0.57 0.46 –

Set No. 2 – 0.68 0.08 0.35 –

Set No. 3 0.06 0.69 0.001 0.35 –

MISR wavebands 426–467 544–571 662–682 847–886

Set No. 4 0.1587 � 0.2463 0.5442 0.3748 0.0149

PolDER wavebands 423–463 530–570 650–690 845–885

The waveband limits (in nm) indicate, respectively, the wavelengths Weiss et al. (1999) considered for generic sensors (Set Nos. 1, 2, and 3), the nominal

wavebands Liang et al. (1999) considered for the MISR sensor (Set No. 4), and the PolDER channels.

Fig. 2. Map of the RRMSE (%) between the observed and adjusted BRDFs

over the whole ReSeDA experimental site on March 12th at 670 nm when

using the MRPV model.
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radiative transfer model developed by Myneni, Asrar, and

Hall (1992). Finally, the integration over the [400–2500] nm

spectral range provided three sets of coefficients blj

corresponding to different channel contributions. A similar

set was proposed by Liang et al. (1999) for the MISR sensor,

computed from a linear regression between albedo and

bidirectional reflectances. The linear regression was per-

formed on more than 100 observed reflectance spectra

between 200 and 3000 nm that corresponded to vegetation,

soil, and snow.

4. Assessing the methods used for the albedo retrieval

The proposed approach was assessed using several

statistical tools. Both the absolute/relative root mean square

error (ARMSE/RRMSE) and the absolute/relative bias

(ABias/RBias) between the predicted (P) and observed (O)

variable were calculated as (Eqs. (7) and (8)):

ARMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPk¼m

k¼1

ðPk � OkÞ2

m

vuuut
RRMSE ¼ ARMSE

hOi ð7Þ

ABias ¼

Pk¼m

k¼1

Pk � Ok

m
RBias ¼

ABias

hOi ð8Þ

where hOi is the mean value of the m estimates of the

observed variable. In order to compare the different methods

each other, we also calculated the ARMSE/RRMSE and the

ABias/RBias between two different predictions P1 and P2

(Eqs. (9) and (10)):

ARMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPk¼m

k¼1

ðP1k � P2k Þ
2

m

vuuut
RRMSE ¼ ARMSE

hP1;P2i
ð9Þ

ABias ¼

Pk¼m

k¼1

ðP1k � P2k Þ

m
RBias ¼

ABias

hP1;P2i
ð10Þ

where hP1,P2i is the mean value of the predictions P1 and P2

together. The slope a and the offset b of the linear regression

between the predicted and observed variable provide an

estimate of the systematic error induced by the method used

(Eq. (11)):

Pk ¼ a� Ok þ b ð11Þ

The absolute/relative unsystematic RMSE (ARMSEU/

RRMSEU) provides an estimate of the unsystematic error

by calculating the scattering around the linear regression.

It is expressed as the RMSE between the predicted values

computed from this regression P̄k and the actual ones

(Eq. (12)):

ARMSEU ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPk¼m

k¼1

ðPk � PkÞ2

m

vuuut

RRMSEU ¼ ARMSEU

hOi ð12Þ

Among the numerous PolDER data acquired during the

experiment, three daily sets were removed because of

instrumental troubles (wrong lens adjustment) or strong

atmospheric perturbations (very hazy atmosphere). Besides,

the kernel-driven model performances to adjust the observed

BRDF were assessed over the whole experimental site,

whereas we focused on pixels located on field measure-

ments for further investigations.

Table 2

ARMSE and RRMSE between the observed and the retrieved BRDFs from

Li-Ross model when considering the three pixel selections

Channel Error Selection 1 Selection 2 Selection 3

Blue (443 nm) ARMSE 0.0119 0.0110 0.0073

RRMSE (%) 20.0 18.3 11.1

Green (550 nm) ARMSE 0.0123 0.0115 0.0070

RRMSE (%) 10.6 09.7 05.5

Red (670 nm) ARMSE 0.0125 0.0118 0.0070

RRMSE (%) 10.3 09.5 05.2

NIR (865 nm) ARMSE 0.0242 0.0222 0.0134

RRMSE (%) 07.0 06.5 03.4

Selection 1 corresponds to the whole site without pixels located on the

mountain chain. Selection 2 corresponds to the whole site without pixels

located on both the mountain chain and field borders. Selection 3

corresponds to pixels located on in situ measurements.

Fig. 3. (Top) Daily values of the RRMSE (%) between the observed and

retrieved BRDFs at both 443 and 865 nm when using the MRPV model.

(Bottom) Daily values of the atmospheric transmittance at 550 nm ta, the
atmospheric ozone concentration [O3], and the atmospheric water vapor

content, W (from Leroy et al., 2000). The days of the experiment are given

in month/day.
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5. Performances of the linear kernel-driven

BRDF models

5.1. Retrieval of the BRDF

The BRDF retrieval performances of the kernel-driven

models were evaluated by calculating the ARMSE and

RRMSE between the observed and the retrieved bidirec-

tional reflectances. Whatever were the model and the

waveband, the daily maps depicted large values for pixels

located on both the Alpilles mountain chain and field

borders (see, for example, Fig. 2). The values observed

for the pixels located on the mountain chain were explained

by the inadequacy of the models when they were applied on

inclined areas. The values observed on field borders were

explained by the combination of registration inaccuracy and

spatial variability. Indeed, the PolDER BRDF samplings

were noisy on field borders whereas they depicted classical

shapes within the fields. The daily performances were then

computed over three pixel selections: the whole site without

pixels located on the mountain chain (26% of pixels were

removed), the whole site without pixels located on both the

mountain chain and field borders (46% of pixels were

removed), and the pixels corresponding to the seven field

measurement locations (on the center of the considered

fields). Whatever were the model and the waveband, we

observed the same trend (see, for example, Table 2). First,

the BRDF retrieval performances were slightly better after

the removal of the field borders, with a decrease of the

RRMSE between 0.5% and 2% depending on the PolDER

channels. This small difference was explained by (1) the

nonsystematic removal of the noisy pixels by the mask that

did not account for the unsystematic error on image

registration and (2) the significant spatial variability inside

some fields. Second, the RRMSE was almost divided by

two when considering pixels located on field measurements,

for which the perturbations due to the combination of

spatial variability and registration inaccuracy were low

since the neighborhood was homogeneous. Therefore, only

the pixels located on field measurements were considered

for further investigations.

A possible impact of the residual noises after atmo-

spheric corrections was assessed by comparing for each

model and each PolDER waveband the daily RRMSE

against the atmospheric variables used as SMAC inputs:

aerosol optical depth at 550 nm, atmospheric ozone con-

centration, and atmospheric water vapor content (see an

example in Fig. 3). Whatever the model and the waveband,

this comparison showed that there was no obvious correla-

tion between the daily performances and the atmospheric

conditions. This has been confirmed by an analytical pro-

cedure that aimed at expressing the RRMSE as a linear

combination of the atmospheric key variables using a

pseudo-matrix inversion. Therefore, the daily performances

for a given waveband were not first driven by possible

residual noises after atmospheric corrections, these latter

having a second- or third-order influence. The performances

might be influenced by the inaccuracy on the sensor

calibration since the procedure underlined a temporal drift

(Leroy et al., 2000), whereas the capabilities of the models

to fit the observed BRDF were certainly the main factor.

The evolution of the fitting performances according to

the waveband was similar from a model to another, with a

decrease of the RRMSE as the wavelength increased

except between the green and red channels (see, for

example, Table 3). These results were similar to those

reported by Baret et al. (1997), and were explained by a

Table 3

ARMSE and RRMSE between the observed and adjusted BRDFs from the four kernel-driven models according to the PolDER channels

Model Error Blue (443 nm) Green (550 nm) Red (670 nm) NIR (865 nm)

Li-Ross ARMSE 0.0073 0.0070 0.0070 0.0134

RRMSE (%) 11.1 05.5 05.2 03.9

MRPV ARMSE 0.0096 0.0069 0.0069 0.0119

RRMSE (%) 14.6 05.4 05.1 03.5

Roujean ARMSE 0.0065 0.0075 0.0077 0.0135

RRMSE (%) 10.0 05.9 05.7 04.0

Walthall ARMSE 0.0079 0.0105 0.0108 0.0171

RRMSE (%) 12.1 08.2 08.0 05.0

Fig. 4. Comparison of the retrieved BRDFs at 670 nm from the four kernel-

driven models against PolDER data when considering the flight line closest

to the solar plan. The observed surface is a bare soil on March 26th. Solar

view angle about 43.9�. The backscattering direction is on left.
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lower signal-to-noise ratio due to both the increase of the

reflectance level and the decrease of the residual noise

after atmospheric corrections (the aerosol scattering

induced strong atmospheric perturbations in the blue chan-

nel that decreased with the wavelength). For a given

waveband, the performances were very close from a model

to another. MRPV was the most sensitive model to the

important signal-to-noise ratio occurring at 443 nm, which

was explained by its semilinear formulation. Apart from

the blue channel, the worst fits corresponded to Walthall

since this model is purely empirical, and the best fits were

provided by Li-Ross and MRPV. For the latter, well-

pronounced backscattering effects were observed at 550

and 670 nm (see, for example, Figs. 4 and 5).

5.2. Hemispherical reflectance estimation

Since no field data of hemispherical reflectance were

available, the unique way to assess the model performances

at this step was to intercompare the model estimates. The

highest RRMSE values occurred in the blue channel what-

ever were the two intercompared models, with significant

values up to 25%. The lowest scatters occurred in any one of

the three other wavebands according to the two intercom-

pared models (see an example in Table 4). Moreover, the

range of the RRMSE over these three channels was very

different from an intercomparison to another. For example,

the values ranged between 7% and 8.1% when considering

Li-Ross and Roujean, whereas they ranged between 5.5%

and 11.5% for Li-Ross and Walthall. Therefore, the quality

of the hemispherical reflectance estimates was not only

driven by the BRDF interpolation performances since the

fitting was better as the wavelength increased with similar

residual errors from a model to another. Fig. 6 displays the

comparison between Li-Ross and Roujean estimates at 550

nm. The over- or underestimations were significantly dif-

ferent according to the PolDER channels, with RBias ranging

from 0% to 12% apart from the blue channel. However, it is

interesting to notice that (1) Li-Ross provided systematically

lower estimates than MRPV and Walthall and (2) Roujean

Fig. 5. Comparison of the retrieved BRDFs at 550 nm from the four kernel-

driven models against PolDER data when considering the flight line closest

to the solar plan. The observed surface is a senescent sunflower field on

July 7th. Solar view angle about 23�. The backscattering direction is on left.

Table 4

Comparison between the hemispherical reflectance estimates from Li-Ross

and MRPV according to the four PolDER channels

Channel

Blue

(443 nm)

Green

(550 nm)

Red

(670 nm)

NIR

(865 nm)

ARMSE 0.0078 0.0098 0.0124 0.0295

RRMSE (%) 12.8 08.1 10.0 08.3

Corr. Coef. 0.9671 0.9891 0.9907 0.9851

Corr. Coef. means correlation coefficient.

Fig. 7. Albedo map on April 10th using the Walthall model and the

coefficient Set No. 1. The Alpilles mountain chain has been removed. We

should notice the presence of well developed wheat and bare soil.

Fig. 6. Comparison between the Roujean and Li-Ross hemispherical

reflectance estimates at 550 nm.
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provided systematically lower estimates than MRPV. All the

results presented here showed that the hemispherical reflect-

ance estimates could be significantly different from a model

to another, as observed by Lucht (1998) and Privette et al.

(1997). This underlined the importance of the extrapolation

performances of the kernel-driven models.

6. Assessment of the albedo retrievals

Several albedo calculations were performed by consid-

ering the four linear kernel-driven BRDF models and the

four sets of coefficients. An example of albedo map is given

in Fig. 7. Generally, the maps depicted albedo values

between 0.1 and 0.4. This important variability was

explained by the simultaneous presence on the site of

vegetative surfaces and bare soils. Tables 5 and 6 display

representative examples of the results we obtained when

intercomparing the albedo estimates. For a given set of

coefficients, these estimates were systematically close from

a kernel-driven model to another, with a RRMSE ranging

between 5% and 8% according to the used set. The

discrepancies were ascribed to the differences between the

hemispherical reflectance estimates. For a given kernel-

driven model, the albedo values could be significantly

different from a coefficient set to another, the RRMSE

ranging between 2% and 19% according to the used

kernel-driven model. The lowest estimates corresponded

to Set No. 4. The estimates decreased when considering

successively Set Nos. 1, 2, and 3, that corresponded to both

a decrease of the red and NIR channel contributions and an

increase of the green channel contribution. These results

showed that the used method was mainly sensitive to the

choice of a coefficient set. Besides, Set Nos. 2 and 3

provided the closest estimates since they were very similar.

This suggested that it might be possible to avoid the use of

the blue channel for which many perturbations occurred.

The validation consisted in comparing airborne Pol-

DER albedo estimates with a footprint about 400 m2

against field measurements with footprints ranging from

1000 and 3000 m2. Therefore, we first assessed the

impact of the spatial variability by computing the relative

standard deviation (standard deviation/mean value) inside

both 3� 3 and 5� 5 PolDER pixel windows. The results,

between 1% and 2%, underlined the negligible effect of

the spatial variability around field measurement locations.

The validation was next performed by extracting PolDER

values through 3� 3 pixel windows. To be consistent on

the temporal aspect, the field measurements were aver-

aged over the period of PolDER data acquisition (about

45 min). An example of comparison between field and

airborne estimates is given in Fig. 8. Whatever was the

airborne albedo computation, we did not notice any

different trend between Kipp and Skye estimates after

the spectral correction of the latter. Representative results

of the validation are given in Tables 7 and 8. Set No. 4

provided estimates close to field measurements, whereas

Set Nos. 1, 2, and 3 overestimated field measurements.

Table 5

Comparison between the albedo estimates for Set No. 1 and the four kernel-driven models

First model Second model ARMSE RRMSE (%) Corr. Coef. ABias RBias (%)

Li-Ross MRPV 0.0168 07.3 0.9588 � 0.0139 � 06.0

MRPV Roujean 0.0113 04.8 0.9760 0.0075 03.2

Roujean Walthall 0.0162 07.0 0.9091 � 0.0053 � 02.3

According to the chosen nomenclature, albedo estimates from the first BRDF model (respectively, the second) correspond to the prediction P1 (respectively,

prediction P2).

Table 6

Comparison between the albedo estimates for the Li-Ross model and the

four sets of coefficients

First set Second set ARMSE

RRMSE

(%)

Corr.

Coef. ABias RBias (%)

Set No. 1 Set No. 2 0.0178 08.3 0.9599 0.0153 07.1

Set No. 2 Set No. 3 0.0055 02.7 0.9963 0.0048 02.3

Set No. 3 Set No. 4 0.0202 10.3 0.9377 0.0167 08.5

According to the chosen nomenclature, albedo estimates from the first

BRDF model (respectively, the second) correspond to the prediction P1

(respectively, prediction P2).

Corr. Coef. means correlation coefficient.

Fig. 8. Comparison between field and airborne albedo estimates considering

the Walthall model and the coefficient Set No. 4.
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These overestimations were explained by the spectral

range Weiss et al. (1999) used when calibrating the linear

combination from a simulated database. Indeed, the

simulations were performed over the [400–2500] nm

spectral interval, while the whole solar spectrum ranges

between 300 and 3000 nm. Therefore, incident solar

radiation was lower than the actual one, by 6–8%

referring to the works of Avaste, Moldau, and Shifrin

(1962). Since reflected solar radiation is low outside of

the range 400–2500 nm, this led to higher albedo values

than the actual ones. The good results obtained with Set

No. 4 were explained by (1) the similarity between the

MISR and PolDER wavebands (see Table 1) and (2) the

spectral interval Liang et al. (1999) considered when

calibrating the linear combination, i.e., [200–3000] nm.

We should notice that this set was calibrated using

bidirectional reflectance data, which suggested that the

directional aspect is of second order for the calibration.

When considering Set No. 4, Walthall and Li-Ross

models provided the best albedo values as compared to

field data. This was explained by the robustness of

Walthall when considering numerous situations, and could

be explained by the good performances of Li-Ross for

the hemispherical reflectance computation (Lucht, 1998;

Privette et al., 1997). Finally, the two couples (Walthall,

Set No. 4) and (Li-Ross, Set No. 4) either accounted the

best for the numerous land-use situations occurring

throughout the ReSeDA experiment, or induced error

compensations that provided the closest albedo values

to the field ones.

In order to assess the accuracy that it would be possible

to achieve after an in situ calibration, we calculated the

coefficients of the linear regression between predicted (or

airborne) and observed (or field) estimates, as well as the

absolute and relative unsystematic RMSE (ARMSEU and

RRMSEU) (see, for example, Table 9). The coefficients of

the linear regression for Set Nos. 1, 2, and 3 suggested that

considering only hemispherical reflectances in red and NIR

channels (Set No. 1) induced mainly an offset, while using

more wavebands (Set Nos. 2 and 3) provided an over-

estimation of the low albedo values and an underestimation

of the high ones. The same over- and underestimation trend

was observed with Set No. 4. Finally, the RRMSEU com-

putations showed that the lowest unsystematic errors corre-

sponded to Li-Ross and Walthall along with Set No. 4

(RRMSEU about 8.1% and 7.7%, respectively).

7. Conclusion

The objective of this study was to map albedo over

agricultural surfaces using multidirectional and multispec-

tral remote sensing data acquired during the ReSeDA

experiment with the airborne PolDER sensor. The data

set allowed performing a validation over the whole cycles

of several crops while problems induced by mixed pixel

were reduced.

The multidirectional information was processed using

the most classical linear kernel-driven BRDF models: Li-

Ross, MRPV, Roujean, and Walthall. The BRDF retrieval

performances of the models were similar, with slightly

better results from Li-Ross and MRPV. However, the

quality of the hemispherical reflectance estimates was not

only driven by the fitting performances, but also by the

extrapolation capabilities of the models. The multispectral

information was processed using several sets of coeffi-

cients to express the albedo as a linear combination of the

waveband hemispherical reflectances: three sets proposed

for generic sensors, and one set proposed for the MISR

sensor. The intercomparison of the albedo estimates

showed that the method was mainly sensitive to the choice

of a coefficient set.

The best results obtained when validating the method

against field measurements corresponded to both theWalthall

and Li-Ross models along with the coefficient set proposed

for MISR. This validation underlined the sensitivity of the

coefficient set calibration to the used spectral range. A

relative discrepancy at best about 9% was satisfactory as

compared to the relative accuracy of the radiometric correc-

tions of the PolDER data that was at least about 5%. Further

improvements should be performed, such as the calibration

Table 7

Absolute and relative RMSE and bias between airborne and field albedo

estimates for the four sets of coefficients and the MRPV model

Coefficient set ARMSE RRMSE (%) ABias RBias (%)

Set No. 1 0.0530 27.2 0.0480 24.6

Set No. 2 0.0345 17.7 0.0285 14.7

Set No. 3 0.0320 16.4 0.0251 12.8

Set No. 4 0.0216 11.1 0.0065 03.3

Table 9

Coefficients of the linear regression between field and airborne estimates of

the albedo (a: slope, b: offset), and absolute/relative RMSE between

PolDER estimates and the linear regression (A/RRMSEU)

BRDF model and coefficient set a b ARMSEU RRMSEU (%)

Walthall and Set No. 1 0.9339 0.0483 0.0214 11.0

Walthall and Set No. 2 0.8171 0.0527 0.0215 11.0

Walthall and Set No. 3 0.8791 0.0416 0.0174 09.0

Walthall and Set No. 4 0.7701 0.0443 0.0149 07.7

Table 8

Absolute and relative RMSE and bias between airborne and field albedo

estimates for the four kernel-driven models and set of coefficients no. 4

BRDF model ARMSE RRMSE (%) ABias RBias (%)

Li-Ross 0.0188 09.7 � 0.0051 � 02.6

MRPV 0.0216 11.1 0.0065 03.3

Roujean 0.0226 11.7 0.0020 01.0

Walthall 0.0168 08.7 0.0001 00.1
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of the linear combination by accounting for the vegetative

situation through either the NDVI (Song & Gao, 1999) or the

fractional vegetation cover. Moreover, it would be interesting

to use linear combinations without considering the blue

channel for which many perturbations occur due to the

scattering by atmospheric aerosols.

It is important to notice that both the performances of the

method at different steps and the final product quality were

assessed over very homogeneous areas (in centers of fields

were was located the ground measurements). However, the

performances of the method were significantly poorer over

the whole site, which was explained by the combination of

the registration inaccuracy and the spatial variability. This

underlined the importance of the registration accuracy when

using high spatial resolution remote sensing data.
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